数据、传感器、打车服务,谁是未来无人车制胜关键?
相关评论
来源:
作者:
发布时间:2018-03-10 09:07

  现在,得有好几十家公司尝试着要拿下无人车技术,OEM车厂、传统供应商、主流科技大佬以及新创公司都不甘落后——很显然,并非所有人都能成功,但它们之中,有成功机会的大有人在。

  这让人开始思考:无人车领域的“赢者通吃”会是什么样、在哪个部位实现,以及通过什么途径实现。

  在无人车领域,还会不会像智能手机和PC操作系统上一样,出现“网络效应”,让一两家顶尖大公司挤掉剩下所有人?

  是否会存在让五家、十家公司持续竞争下去的空间?

  哪一层级的胜利会对其他层级产生杠杆效应?

  这些直接指向未来汽车行业权力平衡的问题值得好好讨论。汽车制造商能够从几十家公司“成箱”购买自动驾驶技术(或是自己搞出来),和Uber Waymo两家独大,随心所欲、肆无忌惮地制定游戏规则,这完全就是两个世界。

c.jpg

  微软和英特尔扼住了PC世界的咽喉,谷歌挠到了智能手机的脚心——无人车行业的关键点又会出现在哪个部位呢?

  硬件:没有网络效应

  首先有一件事似乎非常清楚:对于自助系统和电动系统而言,硬件和传感器将成为通用商品。后两者,比如LED显示屏,涉及大量的技术和工程细节,但在选择上你却没必要随大流。这里存在很强的制造商规模效应,但是不存在网络效应。

  我们拿激光雷达举个例子。

  这玩意从5万刀的“旋转全家桶”,到几百刀或更便宜的小型固态激光雷达,啥样都有,当然会有赢家从中出现,但不会有网络效应存在。

  因为拿下激光雷达这块战场不会对其他战场产生作用(除非你能垄断),就像“造出最好的图像传感器然后把它们卖给苹果”对索尼的智能手机业务没什么帮助一样。

  电池、发动机、以及它们的控制系统,就像现在电子行业的RAM一样,都是商品——再次重申,这个领域涉及大量技术、会有规模效应,也许还会有一些优胜者,但不会有更广阔的影响力。

  按需服务:不一定行得通

  另一方面,对于第三方软件开发者的生态系统而言,要走效仿过去PC和智能手机的路径可能不是那么容易。

  当年,Windows怼翻了Mac,iOS和Android怼翻了Windows Phone,因为在所有东西之上形成了一个开发者的良性循环——但在汽车这件事上,你不会根据能跑动多少app来决定买什么车。它们可能接入的都是Uber、Lyft或是滴滴,屏幕上挂的都是Netflix,而不是你手机上装的那些东西。

  相反,需要关注的地方并不在汽车内部,而是在更高的层面——在能让无人车安全上路的软件上,在全城尺度下的调配和路径优化上(这意味着我们将所有无人车看作一个系统,而不是各自为战),在那些将会以此为生、按需服务的“机器人出租车队”上。

  很明显,按需服务软件存在网络效应,但这点在无人车行业却要复杂得多。按需的无人出租车队将会动态地对自己的车辆进行预先部署,也有很大可能,所有其余的无人车都要实时配合它们的路线,以追求最大效率。

  这种优化可能需要跨越不同车队,来避免一些类似“所有无人车同时选择来相同路线”的情况出现。反过来,这还能和动态定价以及所有不同种类的道路收费方式相结合——在繁忙时段,为了更快到达目的地你可能需要花更多钱,或者,你也可以依据价格来选择到达时间。

  从技术角度而言,这三层(驾驶、路线及优化、按需)是在极大程度上独立的——在这样的假想下,你可以在一辆通用制造的无人车上安装一个Lyft的App,让预装的Waymo自动驾驶软件开着它,载着别人去兜兜风。

  当然,有些人希望不同的层级之间会产生杠杆效应,或者想把它们捆绑在一起,比如特斯拉计划禁止乘客在其无人车上使用自家产品以外的按需服务。但反过来这事就行不通了,Uber不会坚持让你只使用他家的自动驾驶系统。

  尽管微软让Windows同Office之间产生了相互作用力,但二者都很强,同时也都用自身的网络效应赢下了各自的市场。

  往后,如果一家小型的OEM坚持让你使用它的小型无人出租车服务,这事就像是苹果在1995年坚持让你买AppleWorks办公软件,而不让用微软的Office。

  这个案例可以很好地说明,假如所有的无人车都能跨城协调,或者在某些路口实现车与车之间的沟通,那你将会需要创造一些能够共通的层次(虽然我一直看好的是分散式系统)。

  数据:网络效应的关键

  其实上面这些都是在瞎猜,就像在1900年预测交通拥堵会是什么场面一样。

  而我们唯一能讨论关键网络效应会是什么样子的领域,其实在于无人车本身。这件事关乎硬件、传感器以及软件,但更多是关于数据。

  对于无人车而言,有两种数据比较重要——地图和驾驶数据。

b.jpg

  先来说说地图。